groups with soluble minimax conjugate classes of subgroups

نویسندگان
چکیده

a classical result of neumann characterizes the groups in which each subgroup has finitely many conjugates only as central-by-finite groups. if x is a class of groups, a group g is said to have x-conjugate classes of subgroups if g/coreg(ng(h)) 2 x for each subgroup h of g. here we study groups which have soluble minimax conjugate classes of subgroups, giving a description in terms of g/z(g). we also characterize fc-groups which have soluble minimax conjugate classes of subgroups.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nilpotent groups with three conjugacy classes of non-normal subgroups

‎Let $G$ be a finite group and $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$‎. ‎In this paper‎, ‎all nilpotent groups $G$ with $nu(G)=3$ are classified‎.  

متن کامل

groups with all subgroups permutable or soluble

in this paper, we consider locally graded groups in which every non-permutable subgroup is soluble of bounded derived length.

متن کامل

nilpotent groups with three conjugacy classes of non-normal subgroups

‎let $g$ be a finite group and $nu(g)$ denote the number of conjugacy classes of non-normal subgroups of $g$‎. ‎in this paper‎, ‎all nilpotent groups $g$ with $nu(g)=3$ are classified‎.

متن کامل

POS-groups with some cyclic Sylow subgroups

A finite group G is said to be a POS-group if for each x in G the cardinality of the set {y in G | o(y) = o(x)} is a divisor of the order of G. In this paper we study the structure of POS-groups with some cyclic Sylow subgroups.

متن کامل

intersections of prefrattini subgroups in finite soluble groups

‎let $h$ be a prefrattini subgroup of a soluble finite group $g$‎. ‎in the‎ ‎paper it is proved that there exist elements $x,y in g$ such that the equality‎ ‎$h cap h^x cap h^y = phi (g)$ holds‎.

متن کامل

Finite groups with $X$-quasipermutable subgroups of prime power order

Let $H$, $L$ and $X$ be subgroups of a finite group$G$. Then $H$ is said to be $X$-permutable with $L$ if for some$xin X$ we have $AL^{x}=L^{x}A$. We say that $H$ is emph{$X$-quasipermutable } (emph{$X_{S}$-quasipermutable}, respectively) in $G$ provided $G$ has a subgroup$B$ such that $G=N_{G}(H)B$ and $H$ $X$-permutes with $B$ and with all subgroups (with all Sylowsubgroups, respectively) $...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
iranian journal of numerical analysis and optimization

جلد ۱، شماره ۱، صفحات ۰-۰

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023